Direct and indirect control of process plants with a neural network

Dipl.-Ing. Frank Gebhardt NeuronalNetWorks! GmbH (NNW)

NeuronalNetWorks! GmbH – Overview

30+	14	~ 3 Mio.€	3
Years of experience	Projects**	Development	Products
Plant-Engineering:	Germany*	 ~ 20,000 man-hours of development work 	AI-Prediction*
 Electrical and I&C technology 	Netherlands*	with originally approx. 9 team members	AI-Assistant
- Thermal process engineering	Austria	Spin-off of Uniper SE 2023	AI-Operator
- Renewable energies	Netherlands		
	England		
			* E NINI\A/

NEURONALNETWORKS!

* Focus NNW

Content of today's lecture

- Al can improve process engineering operations
- **Presentation of implemented improvements** through the implementation and operation in a pilot plant
- Presentation of the AI implementation
 - Examples of AI Operator
 - Examples of AI Prediction

That's what it's about

- AI
 - trustworthy
 - o deterministic

- Process engineering plants
 - \rightarrow here especially waste incineration plants
 - o with conventional control

The AI-Solution can improve waste incineration plant operations

Development of AI applications with the following challenges:

- Volatile incineration process (e.g. fresh, damp waste versus high-calorie waste)
- Long dead times, e.g. in connection with CO generation, are challenges for plant operators and automation
- **Optimization** of several key figures (e.g. waste throughput, energy efficiency, flue gas reduction, reduction of emissions and consumables, etc.)
- Human plant operators often control several blocks / lines in parallel
- High requirements with regard to plant and data security
- Limited budget for additional equipment

The pilot: 27 months of operation in an MVA (2019-2021)

NNW AI solution differs from other AI tools in the energy sector

NEURONALNETWORKS!

Focus below

Use of artificial intelligence to analyze process data

Analysis of process data with artificial intelligence (ANN*)

Strengths ANN*

- Detecting correlations
- Pattern recognition
- Recognition of dead times (time-shifted relationships)

NEURONALNETWORKS!

AI processes complex relationships

The neural network learns the process image

- Result of the correlation analysis
- 24 measured values
 Use of relevant sensor data
- History
- Includes values derived from measured values, e.g. gradient, curvature and dead times

Predictions or Control by Al

- 12 learned control outputs
- Several time predictions possible: e.g. 5 min to 30 min into the future
- Continuous control without delays
- Al can operate the system in 24/7 mode
- AI can handle dead times

Different operating modes are possible

Example: Al-Assistant/ Al-Operator - 1

Project Setup

Туре	Waste incineration plan
Fuel	waste (350,000 t/a)

- Automation Manual operation
- Location GER, Lower Saxony

Challenges & goals of the pilot project:

- Older boiler with low automation
- Old sensors (tw. over 25 years old)
- Older boiler design leads to suboptimal air distribution
- Long dead times
- Higher waste throughput possible if steam production is equalized

Solution

Step 1: AI-Assistant

- Recommendations for the air flaps; Optimization of air distribution
- · Recommendations for the setpoint of the load
- Operator control

Step 2: Al-Operator

- Automation of air flaps and automation of the oad setpoint
- Operator can switch the AI operator on/off at any time
- Positive feedback from the AI Operator by the Operators

Example: Al-Assistant/ Al-Operator - 2

Project Setup Solution **Circulating fluidized bed** Step 1: Al-Assistant Type Fuel Sewage sludge (200,000 t/a) Recommendations for optimal control of vortex air and the return • dewatered, coal flue gas Operator control Automation Manual operation • Location GER, NRW **Step 2: Al-Operator** Automation of the frequency converter Challenges & Goals: Al Operator for the vortex air and the control flap Keep the temperature in the combustion chamber of of the return flue gas the CFB furnace constant at about 890°C The Operator can switch the ٠ <u>س</u> AI controls the process Increase in sewage sludge throughput and steam Al-operator on/off at any time production Similar to autopilot-Avoidance of: - Support burner insert Human Operator - Unavailability in case of temperature limit violation supervises process and

٠

٠

٠

Example: Al-Assistant/ Al-Operator - 3

Pro	lect Setlin

Туре	Gas-fired power station
Fuel	Gas
Automation	Fire-Rate-Control

Location GER, Bayern

Challenges & goals of the pilot project:

- NO2 can only be influenced directly by the firing process
- Control of the combustion air to achieve optimum CO, NO2 and O2

Solution

Step 1: AI-Assistant

- Recommendations for the Lambda correction (fuel/air ratio) to achieve optimum CO, NO2 and O2 at full load
- Operator control

Schritt 2: Al-Operator

- Automate the Lambda Correction
- The Operator can switch the Al-operator on/off at any time

Different operating modes are possible

Predicting Process Variables with AI

• NeuronalNetWorks! GmbH (NNW) is currently specialized in the prediction of process engineering variables for reducing consumables and costs such as:

o Steam production

o NOx/NH3 in flue gas

Example: AI-Prediction – 1 and indirect control

Projekt Setup

Туре	Waste incineration p	ant
Fuel	Waste (447.000 t/a)	

- Automation Fire-Rate-Control
- Location GER

Challenges & Goals:

- Fresh, damp waste will be delivered around 8:00 a.m.
- The Fire-rate-control interprets the data incorrectly, it will heap the grate
- This regularly leads to steam drops
- Oil use is required to reach combustion temperature again

Solution

Step 1: AI-Prediction Tool

- Prediction of steam production
- Based on the forecast, measures can be taken to avoid the steam drop
- Avoidance of steam drops, maintaining temperature and more efficient combustion
- This is the concept of indirect control!

Step 2: Al-Operator (planned)

 Training of the AI operator on the basis of the optimized manual operation with the help of AI Prediction!

Prediction - Example

NEURONALNETWORKS!

Deterministic AI implemented in the DCS (i.e. ABB)

Example: Al-Prediction – 2 and indirect control

Projekt Setup

Туре	Waste incineration plant
Fuel	Waste (350.000 t/a)
Location	NL

Challenges & Goals:

- The NH3 slip controller does not work well
- Too much NH3 is used to reduce NOx
- A neural network serves as a digital twin for the prediction of NOx and NH3
- Furthermore, the synapse weights of the neural network are used to find the causes of the faulty NH3 injection

Solution

Step 1: AI-Prediction Tool

- Prediction of NOx and NH3
- Based on the forecast, measures can be taken to avoid the NH3-slip
- Avoidance of NH3-slips, less costs for NH3 combined with environmental protection, because of less NH3 and NOx in the flue gas
- This is the concept of indirect control!

Step 2: Al-Operator

 Training of the AI operator on the basis of the optimized manual operation with the help of AI Prediction!

5 simple steps to a successful AI project

We have developed our AI for different use cases

Project References (excerpt)

Grate firing: waste / biomass	 Steam drop forecast* Forecast NOx and NH3 peaks* Forecast CO peaks* Reducing emissions and increasing steam production and waste throughput by optimising the incineration process* Reduction of boiler contamination / extension of travel time by reducing boiler temperature*
Fluidized bed	Combustion air control**
Gas boiler	 Increased maximum performance by trimming combustion air (gas boiler)**

NEURONALNETWORKS!

* Focus NNW

** with predecessor companies

.1

0

REURONALNETWORKS!

Frank Gebhardt CEO (Geschäftsführer) Frank.Gebhardt@neuronalnetworks.de

+49 177 611 5983

